
Fluid Tool - Product Description

William Scherlis, Carnegie Mellon University, Feb 28, 2005

What is it? The Fluid Tool provides the working developer with a means to detect potential race
conditions in Java programs and assure their absence. The Tool is integrated into the widely
adopted Eclipse development environment. It is intended for use by individual developers
actively evolving a Java code base, by software teams with build and configuration server, or by
acceptance evaluators assessing code developed by others.

Features: The Fluid Tool is distinguished from other source-code analysis tools in four ways: (1)
It provides positive assurance, in the sense that there are no false negatives—Fluid is able to
assert an absence of errors with respect to a given model. (2) It addresses the hardest errors—the
errors that defy conventional testing and inspection. The current version of the tool provides
positive assurances for Java race conditions and a number of other critical dependability error
types. These types of errors may be manifest in code at locations far from the actual enabling
fault sites. Additionally, these errors may be intermittent and infeasible to replicate. (3) The tool
enables developers to express critical design intent not expressible directly in code, for example,
which locks protect which data. (4) The tool does not give false positives. This is due to the use
of explicit design intent. Declarations of design intent are very simple—mostly one line javadoc-
style annotations interspersed in program text. The tool uses a hybrid suite of composable static
analyses to assess consistency of the code and the models expressed using these program
annotations.

Benefits: The Fluid Tool provides static assurances for critical multi-threading properties that are
difficult or impossible to assess using traditional testing, inspection, and runtime checking
techniques. The analyses provide both “good news” and “bad news”—the tool can provide static
assurance of absence of race conditions (with respect to models provided) as well as to detect
potential races or other dangerous conditions in the code. As a developer evolves a system, the
tool will track consistency of model and code in an ongoing fashion. It also detects potentially
dangerous conditions such as lock-protected references to shared state that may not itself be
protected. (This is usually repaired by extending the declaration of design intent to indicate that
the lock is meant to protect the delegate object. The tool then automatically analyzes whether
there are any potential "leaking" references to that object.)

Successes: The Tool has been experimentally applied to a wide range of at-scale Java production
systems and components in aerospace, government, and top-10 software vendors. In virtually
every case, including widely used library code, it has found faults that can trigger race errors (not
false positives). The suggested corrections passed the internal vendor regression test suites. At
multiple sites, suggestions were made by developers and first-line managers that the design intent
notation be adopted on an ongoing basis for documenting concurrency-related design intent.
Additionally, in several of these case studies, the Fluid team was able to rapidly locate faults that
had eluded intense bug-finding effort. In one case, the tool located a fault that had been the target
of an active search by the development team over a period of several weeks prior to the case
study engagement. As developers made corrective changes to the code, the Tool supported a
process of rapid iteration to experiment with adjustments to both code and model in order to
achieve consistency.

Contexts in which it is best used: The Fluid Tool is robust and scalable, and has been applied to
Java systems at a scale of several hundred KLOC. It works most effectively on systems that are

decomposed into subsystems—this allows for more rapid iteration of analysis. Code must build in
the host tool environment (currently Eclipse) before it can be analyzed. Extensive or global use of
meta-linguistic features such as reflection and highly specialized loaders may be problematic. The
tool presently supports analyses for lock-based concurrency and non-lock concurrency, in which
state is protected through policies that regulate which threads can touch which data (e.g., safe use
of a GUI redraw thread). The non-lock concurrency analyses also apply to realtime threading
policies, for example, statically assuring that no-heap threads respect policies. Additional error
types are being added, and it is possible to develop specialized analyses, though that requires a
more strategic engagement. The experience of the several case study engagements already
accomplished indicates that an early “diagnostic” collaboration of one to three days that brings
Fluid team members together with developer/users is the most effective way to initiate use.

Compare with alternate known products or technologies. There are several categories of
technologies with which Fluid can be compared:

(1) Testing tools. For many categories of faults and errors, test tools can be extremely effective
in reducing defects. But when systems are non-deterministic and asynchronous, errors can be
intermittent and infrequent, and even then manifest only due to particular combinations of
simultaneous stimuli. In these cases, testing is unlikely to be a successful approach to identifying
the faults that lead to intermittent errors such as races and deadlocks. Additionally, testing cannot
generally be used to identify inappropriate access to critical state in a system, because the kind of
alias analysis required yields a result of universal character.

(2) Inspection, including tool-assisted inspection. Inspection is effective in assessing design and
local code manifestations, such as pattern compliance. The errors addressed by Fluid, however,
tend to have a distributed and often global character. Error manifestations may be far from the
enabling fault sites. Additionally, code inspection is unlikely to juxtapose multiple code
segments to reveal an inconsistency in intent (e.g., which lock should be used) when the intent is
not expressed directly by developers.

(3) Model checking tools. Model checking is an exceptionally powerful technology that can
detect many kinds of concurrency errors, but in the current state of the art scalability is a major
challenge, as is the modeling of design intent. Scalability is elusive because it is still a research
problem to compose assurance results, which is a key to the scalability of Fluid. Model checking
can yield a positive assurance (i.e., a guarantee of no false negatives) only for certain categories
of models and systems.

(4) Rule-based bug finding tools. Many rule-based bug finding tools match a library of patterns
against the syntactic structure of code, as represented by abstract syntax trees. Some augment this
by static analyses of various kinds, ranging from binding and typing to more sophisticated
analyses. But in general these tools yield false positives because design intent is guessed and the
analyses are imprecise. Fluid increases precision due to a combination of design intent, the use of
composition and cut-points in analysis, and an aggressive specialization and hybridization of the
analyses used to achieve the overall aggregate assurances. Rule-based tools generally also yield
false negatives, for the same reason.

(5) Specialized analysis tools. There are several specialized analysis tools in the market,
particularly for C and C++, that address language-specific issues related to storage safety, type
safety, and respect for encapsulation. There are some emerging analysis tools for Java.

(6) Program verification systems. Program verification has been a research topic for nearly 40
years (dating back to Floyd’s landmark paper), and is useful for very small and highly critical
code components. Unfortunately, scalability has continued to elude verification approaches
based on traditional program assertions and general-purpose theorem proving. Some
“compromise” approaches have been developed (e.g., ESC/Java) that focus on particular
characteristics such as array bounds and other code-safety issues. These approaches can operate at
greater scale and on existing code bases, but they require extensive program annotation with pre-
and post-conditions and invariants before analysis results are forthcoming. Fluid focuses on error
types that do not require this kind of extensive a priori modeling.

(7) Dynamic (runtime) monitoring. Runtime monitoring is a useful technique to detect certain
categories of errors at runtime. The technique has the advantage of detecting errors, and so
allowing for remediation and recovery. Indeed, this is part of the idea of “self-healing
architectures,” in which pervasive logging and auditing supports rapid detection of anomalies.
Certain kinds of errors cannot easily be detected at runtime, however, without radical redesign of
a system. For example, inappropriate aliasing can often be detected only at great expense
(reference counting). Certain kinds of races may not be detectable at all.

Finally, we note that the present version of Fluid supports Java only, while there are many tools
in the market that support C and C++.

What will a successful collaboration look like?

What will the technology provider do? We propose a pattern of engagement that has an
initial phase of collaboration between the engineering organization and the Fluid team, followed
by more independent use by the engineering organization with ongoing technical support from
the Fluid team. The Fluid team will collaborate with engineering organizations developing or
maintaining Java code. Generally speaking, a direct or closely coordinated collaboration for an
initial period of two to four days is the most effective start. During this collaboration, some initial
modeling is accomplished, races may be found, and assurances provided. This provides in situ
tool training to a number of members of the engineering organization. The Fluid team then
provides a moderate level of usage support and periodic enhancements.

What should the development team do? The NASA development team should
communicate with the Fluid team to assess suitability and needs. The NASA development team
should appoint one or two members to serve as principal technical liaisons with the Fluid team. It
is desirable, but not necessary, for the NASA development team to partition large Java system
into a set of subsystems of about 50-100KLOC each. This will enable a more rapid iteration cycle
on code development, modeling, and analysis. An ideal development organization will already be
familiar with Eclipse (www.eclipse.org). If not, the subsystems to be analyzed need to be able to
be built in Eclipse. (We have not experienced any major problems in this regard—Eclipse
supports many build tools and patterns, including ant and gmake.) It is expected that Fluid will
be deployed on other development platforms, depending on demand. Finally, the development
team should provide feedback to the Fluid team regarding usability, coverage, features, etc.

How will the technology provider work together with the development team to

ensure a successful collaboration? The Fluid team will support an initial intensive period
(typically a couple of days) of collaboration. This will assure that the tool can be integrated into
the development environment, that the Java subsystems of interest can build, and that models can
be defined for critical attributes.

